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Abstract 
The error treatment given by Blow & Crick [Acta 
Cryst. (1959). 12, 794-802] in the isomorphous 
replacement method can be readily introduced into 
direct methods when they are used to handle the 
single isomorphous replacement (SIR) or the one- 
wavelength anomalous scattering (OAS) data. The 
'best phase relationship' is defined similarly to the 
'best Fourier'. Expressions of the 'best phase' and the 
'figure of merit' for individual reflection have been 
derived for the SIR or OAS case. These enable initial 
signs to be obtained for a set of ACn without knowing 
the sign of any one ACH in advance. Finally, a weight- 
ing scheme is proposed for the refinement of signs 
and magnitudes of Aq9 H. 

The best phase relationship 
Following Blow & Crick (1959), we consider the error 
in a single triplet relationship arising from the error 
of only one reflection (say EH,). We write 

/ tEn=  K ' ( E ~ , -  E~,)EH_H,, (1) 

where K '  is a constant, E~, is the value of EH, 
employed in the calculation and Eh, is the true value 
of EH,. From (1), 

AE 2 K,21 2 , = En-n,I IEs,-Eh,]  2 -- KIE~ , -  En't' 2, (2) 
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where K is also a constant. Now a best phase relation- 
ship is defined as that which leads to a minimum 
value of AE 2. In practice, E~, can only be expressed 
in the form of a probability distribution. Accordingly, 

AE 2= K J IE~,-En,[2p(E.,) dEn,. (3) 

Let O(AE2)/OE~,=O, then 

Eh ,= J EH'P(EH') dEn, = EH'best- (4) 

EH' can be expressed by EH, exp (iaH,), where EH, can 
be derived from the experimental data. Since the error 
to be considered in EH, is the phase error, (4) can be 
written as 

t" 

EH'best = EH' [ exp (iOlH,)P(aH') dan,. (5) 
a /  

Let 

mH, = ran, exp (iaH'best) = [ exp (ian,)P(an,) dan,, 

(6) 

(5) becomes 

En,b~st = mH'EH' exp (ian,b~st). (7) 

Here an,best and ran, are known as the best phase and 
the figure of merit in protein crystallography. They 
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were originally defined by Blow & Crick (1959) in 
order to obtain a 'best Fourier ' .  As can be seen above, 
these concepts can also be used in direct methods.  
This conclusion has actually been made  by 
Giacovazzo (1979) in a different context. 

Expressions for the best phase and the figure of merit 
in the SIR or O A S  case 

In the case of SIR or OAS there are two equal ly 
possible phases for each reflection. The phase doub- 
lets are of the form (Fan Hai-fu, Han Fu-son, Qian and 
Jin-zi & Yao Jia-xing, 1984) 

! 
(~H = ~ H  -{- IA~oHI. 

In the case of SIR, q~h equals the phase of  the 
replacing atoms, ~0..o, while, in the case of OAS, 
q~h=~On.Q+to, where to is the phase difference 
between F~,o and Fn.o. Fi~,o is the contr ibut ion from 
the imaginary  part of  the anomalous  scattering of the 
heavy atoms and Fn,Q is the contr ibution from the 
real-part  scattering of  the heavy atoms. If  there is 
only one kind of anomalous  scatterer, then to = ~-/2. 

The probabi l i ty  distr ibut ion of the phase a .  corre- 
sponding to a phase doublet  may be approximate ly  
expressed by the sum of  two Gauss ian  functions with 

, , { { 1, 
their max ima  at a H =  q~n = q~n + A~0H and a n  = q~n = 
q~h--[Aq~H], respectively.* We write 

1 
P(aH) = 20-.(2~r),/2 exp [ - ( a . - ~ 0 h ) 2 / 2 0 -  21 

1 
+20-H(2,rr),/2 exp [--(aH--q~)2/ZO'2H], (8) 

where 0-H can be obta ined from the s tandard deviat ion 
D of the ' lack of closure error' (Blow & Crick, 1959). 
In the case of  SIR 

2 2 0" 2 = F2,pD2/  FH,pQFH,Q sin 2 (AtpH,PO) 

or 

0 . 2  2 2 2 2 = FH,poD /FH,pFH,Q sin 2 (AtpH,p), 

while in the case of  OAS 

2 pt 2 2 = D /4FH,Q sin 2 (A~pH,PQ)- O" H 

If, for some reason, the probabi l i ty  for A~pH to be 
positive, P+, does not equal that for it to be negative, 

* Strictly speaking, a phase-doublet distribution cannot be recon- 
structed from a sum of two Gaussian functions peaked at q~ and 
~p~, since such a sum shifts the peaks towards each other. But this 
does not influence the following results very much, since it just 
introduces an error into ]Aq~HI, leading to an underestimation of 
exp (-try/2) and an overestimation of cos 2A¢H in (16). The total 
effect causes a somewhat under weighting for those reflections with 
I,a~0,1 near 0 or 7r. 

P_, (8) can be rewritten as 

P+ 
P ( a . )  - °'H(2 w)./2 exp [ -- ( a .  -- r¢ ~)2/2try] 

P 
+0-.(2~r) '/2 exp [ - ( a .  - ¢~)2/ 2o2]. 

According to (6), we have 

oc 

rnH sin a.be~, = ~ sin a H P ( a . )  d a n  
-oc 

m .  cos a.be.~, = J COS auP(aH)  dart. 
--oG 

Substitute (9) into (10) and (11). Using the result 
o~ 

f ,/T 1/2 cos bx exp ( - a Z x  2) dx = 2a 

0 

one obtains 

exp ( -  b2/4a2), 

(9) 

(lO) 

(11) 

In deal ing with SIR or OAS data, it would be more 
convenient  to handle  the phase difference Aq~ n than 
the phase q~H itself. Defining A~0nbes,= aHbes,--q~h, 
(14) can be simplif ied to 

2 ( P + -  ½) sin l a ~ . l  
tan (A~0nbes,) = (15) 

COS A~OH 

Adding  together the squares of  (l 2) and (13), one finds 

mn = exp ( - 0 - 2 / 2 ) [ p 2  + p2 +2P+P_ cos 2dq~H] ~/2 

or equivalent ly 

rn .  = exp (-o-2/2){[2(P+ - ½) 2 +½] 

x ( l  - c o s  2ArcH)+cos 2Aq~H} ~/2. (16) 

mn may be regarded as a measure of  reliabili ty of  
Aq~.bes '. AS can be seen, there are three factors 
inc luded in the expression of  ran: 

exp ( -0-2 /2) ,  a measure of  the sharpness of the 
distr ibution of all .  

(p+_½)2, a measure  of the bias of  dq~H towards 
positive or negative. It reaches the m a x i m u m  value 
when P+ equals 0 or 1. 

cos 2Aq~n, a measure of  the closeness of  the two 
possible phases ~o~ and q~.  It reaches the m a x i m u m  
value when Aq~ H equals 0 or ~r. 

P+ sin e h  + P- sin ¢~  
= (14) tan O~Hbes t P +  c o s  ~0 h .~L p _  c o s  (p~" 

Dividing (12) by (13), it follows that 

m .  sin Ctnbest = exp (--0-2/2)[P+ sin rCh + P_ sin ¢¢~] 

(12) 

= -0- . /2)[P+cos~oh+P_cos~o~].  m H COS OtHbes t exp(  2 

(13) 
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Either of the last two factors will have no effect on 
mH when the other one reaches the maximum value. 
If P+ = P_ =I ,  (14) reduces to 

o r  

f e b ,  if SIGN (cos A~o.) = 1 

aHbe.,t = ~ ~Oh + 7r, if SIGN (cos A~OH) = -- 1 

exp (iCtHbest) = SIGN (cos A~CH) exp (i~oh), (17) 

where SIGN(cos A~H) means 'the sign of cos A~pH'. 
Meanwhile, (16) reduces to 

mH = exp (--o-~/2)[cos A~PH[. (18) 

Substituting (17) and (18) into (7), one obtains 

EHbest = exp ( -0"2/2)  cos A~PHEH exp (iq~h). (19) 

This is the 'best' normalized structure factor which 
could be obtained at the beginning from a set of SIR 
or OAS data. 

A procedure for  the ref inement  o f  zlW. 

According to the preceding paper (Fan Hai-fu, Han 
Fu-son, Qian Jin-zi & Yao Jia-xing, 1984) (Paper I), 
the probability for riCH to be positive is given by 

P+ = ½ +½ tanh [2crao'2-3/2E H sin la~. l  

xY. EH'EH-." sin (q0~ +Aq~., +Aq~H_H,)]. (20) 
H' 

Replacing EH, and EH-H' by their 'best' value, 
expressed as (7), leads to 

I I P+ = ~ +~ t a n h  [203023 /2E  H sin ]Aq~HI 

× ~ mH'mH-H'EH'EH-H' 
H' 

×sin (qS~ --~-a~OH,best-+ a(~oU_H,best)]" (21) 

Equation (21) can be used to refine the signs of Aq~.. 
The refinement should start with substituting (17) and 
(18) into (21). This is equivalent to calculating P+ 
with the following equation: 

I I P+ = ~ +~ tanh [2o'3o'23/2E. sin ]A~.] 

× £ exp [ -  (~r~, 2 +CrH-H,)/2]EH,EH-H, 
H' 

x sin ~ cos A~., cos A~pH_H, ]. (22) 

2 Apart from the factor exp [-(cr~ +Crn_H,)/2], which 
takes account of the experimental errors, (22) is the 
same as equation (18) of paper I. From (22), a set of 
initial signs with the associated probabilities is 
obtained. Then, from (15) and (16), a new set of 'bes t '  
phase differences and figures of merit are calculated. 
Substituting these back into (21) results in a set of 
refined signs with the associated probabilities. The 
above process can be carried out iteratively. It should 
be noticed that, if the arrangement of the heavy atoms 

is centrosymmetric, the initial signs cannot be 
obtained by (22), since in this case sin q0~ will always 
equal zero. One way to overcome this difficulty is to 
use the multi random-starting sign sets. Within each 
starting sign set a low initial probability (say I P+ - ½l -- 
0.1) is assigned uniformly to all reflections. Then the 
starting signs can be refined by (21) as above. 

If not only the signs but also the magnitudes of 
A~pH are to be refined, a modified tangent formula 
should be used, which can readily be derived in the 
light of paper I: 

~-~H' E H ' E H - H '  s i n  ( ~  + A q ~  H, + A~0H_H, ) 

tan (A~H) = ~H' En,En-H, cos (q~ + den, + AqgH_H, )" 
(23) 

Introducing the 'best' E's into (23), one obtains 

[~H' mH'mH-H'EH'EH-H" 
sin (q~ + A~H,best "~- A(~H_H,best)] 

tan (A~oH) = 
[Y~H' mH'mH-H'EH-." 

cos (q~; + a¢.,be+, + a * . - . ' h . 3 ] - '  
(24) 

Equation (24) can be used together with (15), (16) 
and (21) in an iterative process to refine both the signs 
and magnitudes of A¢H. The 'flow chart' is as follows: 

i A 

D i s c u s s i o n  

A number of methods (Blow & Rossmann, 1961; 
Hendrockson & Teeter, 1981 ; Wang, 1981) have been 
used to resolve the phase ambiguity arising from the 
SIR or the OAS technique. With these methods, a set 
of initial phases is first derived and then used immedi- 
ately in the Fourier calculation. With the method 
proposed here, the initial phases can be improved 
before they are used to calculate a Fourier map. 
Furthermore, the definitions of the 'best phase' and 
the 'figure of merit' in this paper are the same as in 
protein crystallography, hence a set of 'best phases' 
from various sources in protein crystallography, 
including that from the multiple isomorphous 
replacement method, can also, at least in principle, 
be improved by the method described in this paper. 
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Abstract 

The application of hydrostatic pressure to crystals in 
which some atoms occupy sites with polar point- 
group symmetry causes the position coordinates of 
these atoms to change. This phenomenon is here 
related to inner compressibility tensors. These arise 
naturally in the theory of inner elasticity, where they 
are linear combinations of the macroscopic linear 
compressibilities weighted by components of the 
internal strain tensors, and they indicate the ease with 
which the separation between pairs of sublattices may 
change under pressure. The form of the inner com- 
pressibility tensors is presented for eleven simple 
crystal structures involving up to four atoms in the 
basis. Finally, the inner compressibilities and con- 
straining equations for components of the internal 
strain are obtained from the pressure dependence of 
the structure of the elements As, Sb, Bi, Se, Te and I. 

Introduction 

A recent study of the effect of stress on the structure 
factors of crystals in which some atoms occupy sites 
lacking inversion symmetry was principally devoted 
to uniaxial stress in twenty simple crystal structures 
(Cousins, 1983, hereafter referred to as C). It was 
shown that the key quantities determining the crystal 
response are the inner compliance tensors: products 
of internal strain tensors and the macroscopic elastic 
compliance tensor. 

In this paper the effect of hydrostatic pressure on 
the structure factors of simple crystals is examined. 
The key quantities in this case prove to be linear 

* Permanent address: Physics Department, University of Exeter, 
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combinations of components of the inner compliance 
tensors and these are termed inner compressibilities 
by analogy with the definition of bulk compressibility. 

The structures affected are those in which the point 
symmetry of at least one set of equivalent atoms 
belongs to one of the ten polar point groups: 1, m, 
2, 2ram, 4, 4ram, 3, 3m, 6 and 6ram. This is because 
the coordinates of such atoms are not totally fixed: 
eight of the point groups have one degree of freedom, 
m has two and 1 has three. The value of a free 
parameter in the unstressed crystal will generally 
change when the crystal is subject to hydrostatic 
pressure. In a study of the structure of arsenic under 
pressure Morosin & Schirber (1972) remark that the 
variation of u with p is not given by elastic constants. 
In the strict sense of macroscopic elastic constants 
this is true, but when attention is paid to the interac- 
tions between sublattices, as in inner elasticity theory 
(Cousins, 1978), it is found that du/dp is given by 
the quantities that are here designated inner com- 
pressibilities. This is shown in § 1 and formal results 
are presented for eleven of the structures treated in C. 

Two strategies for determining the inner compressi- 
bility are discussed in § 2 and the independent com- 
ponents for six elements are presented in § 3. In § 4 
the connection between the inner compressibility, the 
internal strain and the macroscopic linear compress- 
ibilities is made explicit for the six elements treated 
in the previous section. 

1. Inner compressibility and the pressure derivatives of 
atomic position coordinates 

If a crystal consists of n atoms per lattice point sited 
at positions x ~' (a = 1, 2, . . . ,  n) and having form fac- 
tors fa(O, )t), the square of the structure factor takes 
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